I’m on a few new papers that have appeared this year. If anyone reading this is interested in these topics, contact me.
Determining the site preference of trivalent dopants in bixbyite sesquioxides by atomic-scale simulations
by CR Stanek, KJ McClellan, BP Uberuaga, KE Sickafus, MR Levy and RW Grimes
Physical Review B 75, 134101 (2007)
Abstract: Oxides with the bixbyite structure have two crystallographically unique cation sites, namely (in Wyckoff notation) 24d and 8b. Since the symmetries of these two sites are different (C2 and S6, respectively), properties related to solute cations will vary depending on the site preference. Therefore, we have employed atomic scale simulation techniques to systematically investigate the solution site preference of a range of trivalent cations ranging from Sc3+ to La3+ in A2O3 bixbyite oxides (where A ranges from Sc to La). Results reveal that when the solute cation is smaller than the host lattice cation, the 24d site is energetically favorable, but when the solute cation is larger than the host lattice cation, the 8b site is preferred. We also discuss the tendency for solute cations to cluster, as well as corroboration of this work by first principles methods.
Defect kinetics in spinels: Long-time simulations of MgAl2O4, MgGa2O4, and MgIn2O4
by BP Uberuaga, D Bacorisen, R Smith, JA Ball, RW Grimes, AF Voter and KE Sickafus
Physical Review B 75, 104116 (2007)
Abstract: Building upon work in which we examined defect production and stability in spinels, we now turn to defect kinetics. Using temperature accelerated dynamics (TAD), we characterize the kinetics of defects in three spinel oxides: magnesium aluminate MgAl2O4, magnesium gallate MgGa2O4, and magnesium indate MgIn2O4. These materials have varying tendencies to disorder on the cation sublattices. In order to understand chemical composition effects, we first examine defect kinetics in perfectly ordered, or normal, spinels, focusing on point defects on each sublattice. We then examine the role that cation disorder has on defect mobility. Using TAD, we find that disorder creates local environments which strongly trap point defects, effectively reducing their mobility. We explore the consequences of this trapping via kinetic Monte Carlo (KMC) simulations on the oxygen vacancy (VO) in MgGa2O4, finding that VO mobility is directly related to the degree of inversion in the system.
Parallel replica dynamics for driven systems: Derivation and application to strained nanotubes
by BP Uberuaga, SJ Stuart and AF Voter
Physical Review B 75, 014301 (2007)
Abstract: We show that parallel replica dynamics can be extended to driven systems (e.g., systems with time-dependent boundary conditions). Each processor simulates a replica at a driving rate that is M times faster than the desired rate, where M is the number of processors. As in regular parallel replica dynamics, when a transition to a new state is detected on any processor, the times are summed and every processor is restarted in the new state. The state-to-state dynamics are shown to be correct if the processors run at the same speed and the system is driven slowly enough (on each processor) so that the escape rates do not depend on the time history of the drive. We demonstrate the algorithm by stretching a carbon nanotube with a preexisting vacancy, noting a significant dependence of the nature of nanotube yield on the strain rate. In particular, we are able to achieve strain rates slow enough such that the time scale for vacancy diffusion is faster than that for mechanical yield at a temperature of 2000 K. We thus observe vacancy-induced morphological changes in the nanotube structure, providing some insight into previously unexplained experimental features.

I just got back from a one-week trip to the UK for a work trip. This is the shortest trip I’ve done overseas. Usually, I like to go for two weeks, just to make the adjustment to the timezone worth it. But, as I’ve got too many things to do back home, I kept this one short. In the end, I think it will be fine. While I had a struggle at times staying awake, I made it through.
Some might infer from my last Rant that I have something against conservatives, singling them out for my vitriol. Well, while I do tend more toward the Democratic side, I don’t think hypocrisy is the sole purvue of the Republicans.
Last week, Lisa and I joined some friends for a lecture put on by the Santa Fe Institute. SFI is known for its quirkiness, and this was the first of their lectures I had attended, so I didn’t know quite what to expect. The speaker was Scott Page, who is at SFI but also at Michigan. He is a computational economist, using methods like agent-based modeling to study economics and how they impact societies.