Tag Archives: Science

Genius: The Life and Science of Richard Feynman by James Gleick

These days, celebrities come in the form of musicians, actors, sometimes politicians, and athletes. They draw lots of attention and, in many cases, lots of money. They impact our lives, creating the music and films we listen to and watch, the sporting feats that entertain us, and, in particular, the policies that govern our lives. However, conspicuously missing in this list are scientists. Arguably, scientists make more profound and lasting changes that have greater impact on our lives, providing the fundamental discoveries and insights that become the technologies that transform our world, our way of work, and even how we are entertained. But, they don’t become celebreties. They are not widely recognized in society. Most of us would be hard pressed to name more than a few scientists, and most of them are known more for their advocacy than their actual science. Think Neil deGrasse Tyson. Or Stephen Hawking. How many more can most of us think of?

Maybe one of the last great scientists that also captivated the imagination of society as a whole was Richard Feynman. Even so, I didn’t know about him as a kid, even as I got into science and was going down a path that ultimately led to a career in science. In my case, I think my first exposure was Feynman’s role on the panel investigating the destruction of the Challenger space shuttle. But, even then, I didn’t know anything about his science.

It wasn’t until later, when I actually began studying physics in earnest, that I started learning something about Feynman’s science and life. That was through his two semi-autobiographical books: Surely You’re Joking, Mr. Feynman! and What Do You Care What Other People Think?. These are more anecdotes of his life rather than detailed accounts of his science, and as such they contributed greatly to his celebrity. He was one of the most respected scientists in the world, but he was also a character, a man full of life, full of stories that let people see a side that wasn’t just the science, a side they could relate to.

I admit that I still don’t know much about Feynman’s science. I went a different direction in physics and his work always felt over my head. I did take one of the volumes of his Lectures on Physics with me when I lived in Spain for a year, hoping to delve more deeply into my studies, but I got distracted by the bar scene in San Sebastian. Of course, I encountered Feynman again in graduate school, but only briefly as my own studies agin took me in a different path.

That said, reading James Gleick’s biography of Feynman, Genius, let me “connect” with the mystique and science of Feynman in a way I hadn’t done before. Gleick intermixes Feynman’s personal life with the scientific advances he was making, including describing the struggles that any scientist encounters to some degree when they are embarking on pushing the frontiers of what is known. At times, Feynman struggled to find a topic that inspired him and, at others, struggled to push that science forward at the pace he really wanted to. At least later in life, Feynman had the luxury, due to his past success, to take his time to work at his pace and on problems of profound interest to him. He didn’t have to worry about the modern “publish or perish” paradigm that stifles so many. It makes me wonder how Feynman would have done in today’s environment.

Gleick does describe many of the profound contributions Feynman made to science, though admittedly they still go over my head. I would hope that if I had the time to devote to understanding his work, I might be able to, but the way Gleick describes how Feynman was able to make his leaps of insight and how he saw the fundamental nature of the universe, one can’t help but feel that Feynman was simply one of those people who truly is a genius, someone who’s mind works in either a different or faster way that allows him to see things others simply cannot see.

Even for a non-scientist, I think this biography would be an excellent read, one that conveys the excitement of scientific discovery as well as the hard work that is involved. It also captures that spark that we are all born with and we all have as kids — that spark that causes us to ask questions about the world around us, that spark that many of us seem to loose as we grow older. Gleick captures that spark in Feynman and the fact that he never lost it, he never stopped asking those questions.

Feynman also challenged those around him. He would ask provocative questions, such as If all scientific knowledge were lost in a cataclysm, what single statement would preserve the most information for the next generation of creatures? Feynman’s answer to this question was: “All things are made of atoms — little particles that move around in perpetual motion, attracting each other when they are a little distance apart, but repelling upon being squeezed into one another.” It is essentially these interactions that form the foundation of my own research, how atoms interact to form materials and how those materials respond when the atoms are disrupted.

The celebrity of Feynman, and of scientists like him, has seemingly diminished. Gleick gives two reasons for this. First, there has been some disillusionment with science since the heyday after World War II, with the advent of nuclear weapons and our ability to essentially self-distruct. Further, the answers science provides in areas such as biology seem less black and white than they used to be, with the recommendations changing with each generation of scientists. This is in part because biology is that much harder than particle physics. Second, with more wide spread access to education and more people becoming scientists, fewer people stand out. As Gleick says, “When there are a dozen Babe Ruths, there are none.”

This book is a fascinating tour of both science in one of its most exciting and dynamic times, when quantum mechanics was being discovered and fleshed out, as well as one of the leading physicists of the time. His personal life was certainly as interesting as his science. A leading scientist at Los Alamos during the development of the first atomic bomb, his sick wife resided in nearby Albuquerque, suffering from tuberculosis, and dying at a very young age. This left Feynman personally adrift, particularly in his relationships with women, even while he contiuned to produce some of the most revolutionary science. All scientists are, at least so far, human, and have their own personal struggles. How these humans develop science is one of the fascinating aspects of this book. The insight into the creative process, the way science progresses, is a story everyone can appreciate. One of Feynman’s insights that resonates with me is that science is a deeply creative endeavor, but, “scientific creativity is imagination in a straightjacket.” As opposed to art, in science “whatever we are allowed to imagine… must be consistent with everything else we know.”

As Feynman described it, science is not an absolute. “The scientist has a lot of experience with ignorance and doubt and uncertainty… we take it for granted that it is perfectly consistent to be unsure — that it is possible to live and not know. But I don’t know whether everyone realizes that this is true.” He contrasted this doubt with the certainty that is often characteristic of religious beliefs. Science doesn’t provide certainty, it provides a framework in which to interrogate the nature of the universe.

In the end, this is a great book about a fascinating man and his remarkable contributions to science. Getting a glimpse of how a very human person who also had one of the greatest scientific minds approached his work and found his way to these great insights is both fascinating and humbling. It certainly wants me to learn more about other great scientists.

 

Boltzmann’s Atom by David Lindley

1009394Ludwig Boltzmann was one of the fathers of statistical mechanics, that field of physics that treats large collections of particles and has allowed us to understand how materials, which are large collections of atoms, behave. That atoms comprise everything around us is almost self-evident today, but only about 100 years ago, many scientists did not believe atoms existed. Scientists like Boltzmann postulated atoms to derive theories that could explain, for example, how gases behave when you squeeze them or heat them up, but, at the time, they were a theoretical construct. Sure, earlier scientists and philosophers had speculated on the existence of atoms, all the way back to the ancient Greeks, but no one had ever seen an atom, so building a whole theory on the assumption that atoms exist seemed, to many scientists, the utmost folly. They thought it was pointless to build theories on hypothetical entities that might never be observed.

In spite of pushback from many established scientists, Boltzmann dedicated his life to developing theories that relied upon the assumption that atoms exist. He was only fully vindicated when Albert Einstein published his paper explaining the origin of Brownian motion, that motion you can see in a microscope in which a particle of pollen, for example, seems to wander randomly around the slide. What caused that motion? Einstein showed it was atoms bombarding the pollen grain from all sides. He did this by using Boltzmann’s theories.

David Lindley’s Boltzmann’s Atom explores the state of physics during the end of the 1800s and how scientists like Boltzmann laid the foundation for modern theories about atoms. Not only did Boltzmann’s work establish some of the pillars of statistical mechanics, but, in some sense, laid the groundwork for the forth-coming quantum revolution. Lindley describes the scientific atmosphere, especially the conflict between pure theorists like Boltzmann and more pragmatic scientists that felt that theoretical physics was not fundamentally science. Ultimately, Boltzmann’s ideas prevailed, but that basic conflict still exists, particularly as modern scientists build theories based on super-strings and membranes, entities that no one knows how we will ever see. The debates we have today about the future of science and whether such theories are really science remind one of the similar debate over atoms.

Not only does Lindley provide a fascinating history of science, but he delves into the life of Boltzmann himself, who was a complicated man. Boltzmann seemed to never be at peace, never happy with the perceived lack of recognition his theories had during his life. He always felt isolated and alone, never in the center of the science world. He always felt like he was missing out, much like the social wallflower that hangs back against the wall at the party. Lindley’s portrayal of Boltzmann and the other scientists of the era shows that scientists are all too human, with their ambitions, egos, and insecurities. That the pillars of such an important branch of physics were such people provides a reality check on how science actually occurs. Breakthroughs aren’t automatically embraced by the community, but often need time to be assimilated, often via the passing of the old guard, before they are truly appreciated. Science, like all human endeavors, can be messy, and the life of Boltzmann highlights this fact.

Having read this accounting of Boltzmann’s life right after that of Alexander Hamilton’s, I am struck by the anxieties we have today. We fret that politics has degenerated or that science is at the cusp of some existential crisis. We always believe that our situation is somehow special, that things are at a tipping point never encountered before. However, reading about these men and their roles in the history of science and the United States, respectively, one cannot but be struck by how little things have changed. Sure, politics are nasty now, but they were nasty way back during the founding. Sure, theoretical physics has an uncertain future, but it did so back when atoms were being discussed. Things are different, but they really aren’t at some level. As they say, those who don’t know their history are doomed to repeat it.

Faraday, Maxwell, and the Electromagnetic Field by Nancy Forbes and Basil Mahon

41P0iwFCz0L._SY344_BO1,204,203,200_Sometimes science advances because of the constant but relatively small contributions of many scientists focused on a field. However, revolutionary advances are often the child of special individuals who see the world in a different way than their contemporaries. Such is the case for electromagnetism and the two people who took it out of the shadows and laid a solid foundation for how electricity and magnetism work. These two scientists were Michael Faraday and James Clerk Maxwell, two of the preeminent scientists of their day. And their story is wonderfully captured by Nancy Forbes and Basil Mahon in Faraday, Maxwell, and the Electromagnetic Field.

Faraday-Millikan-Gale-1913Faraday came from a poor family and was not formally schooled in science. However, his insights and dedication to empirical experimentation provided the foundation for our modern society, discovering not only how the electromagnetic field behaved (even proposing the field in the first place) but using that insight to invent the dynamo and the electric motor. All without any resort to a mathematical description of these effects.

James_Clerk_MaxwellMaxwell, on the other hand, came from a family that could provide for a solid education. Even so, Maxwell stood apart from his peers. Inspired by Faraday’s writings, Maxwell provided the mathematical foundation to Faraday’s observations that led to our ability to really exploit Faraday’s discoveries and subsequently to a myriad of technologies we take for granted today.

This book not only recounts the development of the theories of electromagnetism, from the state of the field when Faraday began his experiments to the researchers who followed in Faraday and Maxwell’s steps, but also is a fascinating expose on how science is done and what motivates science. I was fascinated to learn that Faraday had no particular application in mind when he performed his experiments. Even when he invented the dynamo and electric motor, he couldn’t conceive of an application. The electromagnetic field that Maxwell codified in his famous equations, likewise, did not appear to have any immediate application. It wasn’t until later that other researchers exploited these discoveries, inventing the radio, and using the electric motor and dynamo to create our cities that are powered by electricity. This story highlights the extreme benefit to society of science for science’s sake. Not all science has a clear application and often it is that science that seems most esoteric that transforms our lives the most.

I would highly recommend this book to anyone that has any interest in science or science history. This story captures the wonder that motivates so many people to pursue science in the first place and places the scientific endeavor in the broader context of its role in human development and society as a whole. Simply, this is one of the best books I’ve read and I think every budding scientist would do well to read it.

Science Booth 2014

Every year, around Halloween, my daughter’s school does their “Fall Festival”, which consists of various booths and activities for the kids to do, mostly created by the kids, based on what they are learning that year. This year, for example, my daughter’s class is learning about the prehistoric peoples of the New Mexico area and so they had an activity in which people threw spears at a Mammoth, to hunt for the clan.

Last year, I did a science booth. It is a bit different than a normal demo, in which one might have a specific routine. Rather, here, the kids come up randomly, like they would any fair, and I tried to do something “on demand” to capture their attention. Ideally, they learn a bit of science too, but it is a bit too hectic to teach much. More, I’m simply hoping to show them cool things that kindle their interest in science.

I did the booth again this year. Overall, it went well, though I think it was a bit better last year, except for maybe the finale. I’m still trying to find the right set of experiments and am finding that the ideal experiments are hands-on, ones the kids can not only watch, but directly participate.

141031_ScienceToothpast
Elephant toothpase. My daughter was a banana slug for Halloween. Photo credit: Lisa Van De Graaff.

Like last year, I did Elephant Toothpaste. Basically, you mix hy drogen peroxide and yeast in a bottle and it reacts. Add some dish soap and food coloring and you get a nice foaming mess. The reaction didn’t go quite as fast as last year, I think because the hydrogen peroxide (a stronger 6% solution that you can get at hair salons) was thicker, so it didn’t mix with the yeast as fast. My water, used to activate the yeast, was also not as warm as it should have been, so the yeast wasn’t as active as it could have been. We still got an oozing foam, but it wasn’t quite as dramatic as last year.

141031_ScienceHotIce
The failed hot ice experiment. Seems like the kids were still impressed, but I was pretty disappointed. Photo credit: Lisa Van De Graaff.

Probably the biggest bust was the hot ice. Last year, I had ordered, but not received, sodium acetate to make hot ice, the same stuff that is in those hand warms. If you make it right (essentially just cooking the sodium acetate in hot water to make a supersaturated solution that you then cool to make it supercooled as well) and pour it out, it will instantly solidify, making a growing crystal. Mine solidified as I poured it, actually clogging my bottle, but it solidified into a big glob, not a cool crystal tower. Actually, a test at home worked better in which I just poured it all in a bowl, tapped it to seed the nucleation, and lots of thin crystals grew out. Not quite sure what I did wrong here…

141031_ScienceTornado
The water tornado! We had just seen a much fancier version of this at the Explora! museum in Albuquerque. Photo credit: Lisa Van De Graaff.

Two other experiments that were new this time were the water tornado and the magnet down the copper tube. In the water tornado, you just connect two 2-liter bottles with a special adapter, one of which is filled with water. If you flip it over and give it a swish, a tornado falls. For the magnet, you simply have to drop a strong magnet down a copper tube, which is not magnetic, but the electrical currents generated by the magnet in the tube slow the magnet down so it takes many seconds to fall through. I couldn’t quite tell if the kids got into these. It almost felt like the adults liked them better, especially the magnet.

141031_ScienceOobleck
The kids loved the Oobleck! Photo credit: Lisa Van De Graaff.

As I mentioned, hands-on turned out to be the best and most popular. I made Oobleck again (simply a 2-1 mixture of corn starch and water). Oobleck is a non-Newtonian fluid, meaning it acts differently depending on how hard you hit it. If you hit it hard, it resists like a solid. If you push slowly, your fingers go in slowly like a liquid. It’s just like quicksand, and the kids loved to play with it, even the older ones.

141031_SciencePaint
Especially the younger kids like mixing the colors in the milk. Photo credit: Lisa Van De Graaff.

For the younger kids, I redid the milk+soap experiment. If you start with a small plate of milk, add some drops of food coloring for visual appeal, then touch the milk with a Q-tip dipped in liquid dish soap, because the soap is polar, meaning one of the soap molecules love water and the other end hates it, the soap rushes around the milk, trying to find the fat molecules in the milk to attach their hydrophobic (water-hating) end to the fat, while pushing everything around. The food coloring shows how things just zip around. You get some very pretty patterns. I think if done in a more controlled way, the kids could use this to “paint”. We’d just need to figure out how to take pictures of the final designs.

141031_ScienceRockets
It’s hard to see, but here we are all preparing rockets. Fortunately, no one got hit in the eye, though we did interfere with the booth next door to us as rockets came raining down on her… Photo credit: Lisa Van De Graaff.

The other new experiment involved little rockets. If you take an old film canister, fill it just a bit with water (the less the better), and add half an Alka-Seltzer tablet, you get a rocket. Close the canister, place it lid down on the ground, and step back. Some of the kids were getting their rockets to go easily 15-20 feet into the air. I couldn’t supply Alka-Seltzer tablets fast enough. The second they got a rocket launched, they were right back asking for more. This appealed to both girls and boys, though not the oldest kids. It was a huge hit, though, and one that will definitely have to be repeated.

Incidentally, I couldn’t quite figure out why less water would help it go higher. Another scientist was there watching, and he figured that the pressure build-up has to be the same (that is when the rocket pops), so it is the different amount of gas that is the key. More gas means more energy. I’m not sure that fully makes sense to me, I need to think about it a bit more. But, it shows how even a simple experiment like this can be turned into a real science effort by systematically testing these kinds of parameters.

141031_SciencePumpkin
The not-quite oozing pumpkin. Photo credit: Lisa Van De Graaff.

Finally, I tried to go out with a bang. I carved the school’s initials into a pumpkin and my intention was to put dry ice in a mixture of water, soap and red food coloring to have it foam out of the carved face. It didn’t quite go. I started with a container that was too big and it only foamed out the top as I couldn’t close the pumpkin well. And when I finally got it to go, at least a bit, it wasn’t red. So, it wasn’t quite as appealing and dramatic as I hoped. It was still cool, but not awesome.

Overall, though, I had fun and I think the kids had fun. Even some of the parents had fun. If I was able to inspire even a couple of kids to think about science a bit more, then it was all worth it.

If anyone has any other good ideas for hands-on experiments, or nice visual experiments that can be easily repeated through an afternoon, please let me know!

This Explains Everything edited by John Brockman

thisexplainseverythingEdge is a collection of people, leaders in fields from physics to biology and successful business people and musicians. People we’ve all heard of, like Alan Alda, Jared Diamond, Steven Pinker, and Richard Dawkins, along with a lot of other people that aren’t yet household names, but are leaders in their respective fields. The goal of Edge is to simply get people — intellectual leaders of all sorts — and have them talk. Have them ask questions to one another, have them discuss important topics and push the frontiers of what we, collectively, know. As they summarize their purpose:

To arrive at the edge of the world’s knowledge, seek out the most complex and sophisticated minds, put them in a room together, and have them ask each other the questions they are asking themselves.

As part of this goal to ask and answer questions, each year the Edge contributors propose and vote on a question that they then each try to answer. This has been going on for a few years now and each year the answers are collected into a book, edited each year by John Brockman. The latest book, which is also the first one I read, is called This Explains Everything and collects the answers to the question: What is your favorite deep, elegant, or beautiful explanation?

The book collects about 150 answers from a large variety of people. Each answer is 1-10 pages and vary from choosing Darwin’s Theory of Natural Selection, to Maxwell’s Equations (what I personally would have chosen if I were part of this), to more modern cutting edge science that, to be honest, is sometimes a bit hard to follow. And it isn’t all science, there are poets and musicians who also contribute their answers.

For me, the best thing about this book isn’t necessarily knowing what Jared Diamond’s favorite explanation is, but rather to get different views on well established science, such as Darwin, as well as become exposed to new ideas that, as a scientist working in a very narrow field, I don’t come across in my daily work. Some of the ideas are simply weird — Aubrey De Grey suggests that it won’t be long until monogamy is a thing of the past, essentially equating sharing sexual partners to sharing chess partners. I’m not sure I buy that one. But, there are a lot of other great ideas which I was very happy to learn about. A couple of my favorites:

  • Scott Atran: “reason itself is primarily aimed at social victory and political persuasion rather than philosophical or scientific truth”
  • Joel Gold: “Aristotle defined man as a rational animal. Contradictions like these [described earlier] show that we are not.”
  • Paul Steinhardt, in describing the discovery of quasi-crystals: “While elegance and simplicity are often useful criteria for judging theories, they can sometimes mislead us into thinking we are right when we are actually infinitely wrong.”
  • Frank Wilczek: “In theoretical physics, we try to summarize the results of a vast number of observations and experiments in terms of a few powerful laws. We strive, in other words, to produce the shortest possible program that outputs the world. In that precise sense, theoretical physics is a quest for simplicity.”
  • Gerd Gigerenzer: “Illusions are a necessary consequence of intelligence. Cognition requires going beyond the information given, to make bets and therefore to risk errors.”
  • Anton Zeilinger: “without occasionally taking a risk, even in the most exact science no real innovation can be introduced.”
  • Andre Linde: “mathematicians and physicists can live only in those universes that are comprehensible and where the laws of mathematics are efficient.”
  • Gino Segre: “I have spent a good part of my career searching for an explanation of the masses of the so-called elementary particles. But perhaps the reason it has eluded us is a proposal that is increasingly gaining credence — namely, that our visible universe is only a random example of an essentially infinite number of universes, all of which contain quarks and leptons with masses taking different values.”
  • Andrian Kreye: “In Europe, the present is perceived as the endpoint of history. In America, the present is perceived as the beginning of the future.”
  • Helena Cronin: “And thus environments, far from being separate from biology, autonomous and independent, are themselves in part fashioned by biology.”
  • John Tooby: “Natural selection is the only known counterweight to the tendency of physical systems to lose rather than grow functional organization — the only natural process that pushes populations of organisms uphill (sometimes) into higher degrees of functional order.” and “Entropy makes things fall, but life ingeniously rigs the game so that when they do, they often fall into place.”
  • Peter Atkins: “We, too, are local abatements of chaos driven into being by the generation of disorder elsewhere.”
  • Elizabeth Dunn, on why we feel pressed for time: “They argue that as time becomes worth more and more money, time is seen as scarcer.”
  • Seth Lloyd: “The true symmetry of space is not rotation by 360 degrees but by 720 degrees.”
  • Tim O’Reilly: “Climate change really is a modern version of Pascal’s wager. On one side, the worst outcome is that we’ve built a more robust economy. On the other, the worst outcome really is Hell. In short, we do better if we believe in climate change and act on that belief, even if we turn out to be wrong.”
  • Alvy Ray Smith, on Pixar’s development of animation: “Motion blur was the crucial breakthrough. In effect, motion blur shows your brain the path a movement is taking and also its magnitude.”
  • Albert-Laszlo Barabasi: “North America and Western European cuisine show a strong tendency to combine ingredients that share chemicals… East Asian cuisine thrives by avoiding ingredients that share flavor chemicals.”
  • Lawrence Krauss, on the unification of electricity and magnetism and Maxwell’s equations: “It represents to me all that is best about science: It combined surprising empirical discoveries with a convoluted path to a remarkably simple and elegant mathematical framework, which explained far more than was ever bargained for and in the process produced the technology that powers modern civilization.”
  • Robert Kurzban: “The idea is that when people intervene in systems with a lot of moving parts — especially ecologies and economies — the intervention, because of the complex interrelationships among the system’s parts, will have effects beyond those intended, including many that were unforeseen or unforeseeable.”
  • Samuel Barondes: “personality differences are greatly influenced by chance events.”
  • Stanislas Dehaene: “Our brain makes decisions by accumulating the available statistical evidence and committing to a decision whenever the total exceeds a threshold.”
  • Andy Clark: “Language thus behaves a bit like an organism adapting to an environmental niche. We are that niche.”
  • Nicholas Carr: “The shape of existence is the shape of failure.”

(Ok, my list is a little long… but it serves to illustrate some of the very interesting ideas and concepts that were discussed in this book.)

As I mentioned, the best thing about this book was just being exposed to ideas beyond what I encounter in my daily work. Not all of them are things I can personally use in my work, but they show some of the cutting edge work being done in other fields.

I greatly enjoyed the book and have already downloaded my next one from this group, This Will Change Everything.